A Sample-Weighted Robust Fuzzy C-Means Clustering Algorithm
نویسندگان
چکیده
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملA New Feature Weighted Fuzzy C-means Clustering Algorithm
In the field of cluster analysis, most of existing algorithms assume that each feature of the samples plays a uniform contribution for cluster analysis. Considering different features with different importance, feature-weight assignment can be regarded as a special case of feature selection. That is, the feature assigned a value in the interval [0, 1] indicating the importance of that feature, ...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملImproved Fuzzy C-means Clustering Algorithm Based on Sample Density
Fuzzy clustering techniques, especially fuzzy c-means (FCM) clustering algorithm, have been widely used in automated image segmentation. The performance of the FCM algorithm depends on the selection of initial cluster center and/or the initial memberships value. if a good initial cluster center that is close to the actual final cluster center can be found. the FCM algorithm will converge very q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2011
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2011.11.563